
Journal of Computational Physics 229 (2010) 7488–7502
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Fully implicit 1D radiation hydrodynamics: Validation and verification

Karabi Ghosh *, S.V.G. Menon
Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

a r t i c l e i n f o
Article history:
Received 19 November 2009
Received in revised form 21 May 2010
Accepted 16 June 2010
Available online 23 June 2010

Keywords:
Implicit radiation hydrodynamics
Lagrangian meshes
Finite difference scheme
Point explosion problem
Self similar solutions
Asymptotic convergence analysis
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.06.031

* Corresponding author. Tel.: +91 22 25593959; f
E-mail address: karabi.barc@gmail.com (K. Ghos
a b s t r a c t

A fully implicit finite difference scheme has been developed to solve the hydrodynamic
equations coupled with radiation transport. Solution of the time-dependent radiation
transport equation is obtained using the discrete ordinates method and the energy flow
into the Lagrangian meshes as a result of radiation interaction is fully accounted for. A tri-
diagonal matrix system is solved at each time step to determine the hydrodynamic vari-
ables implicitly. The results obtained from this fully implicit radiation hydrodynamics
code in the planar geometry agrees well with the scaling law for radiation driven strong
shock propagation in aluminium. For the point explosion problem the self similar solutions
are compared with results for pure hydrodynamic case in spherical geometry. Results
obtained when radiation interaction is also accounted agree with those of point explosion
with heat conduction for lower input energies. Having, thus, benchmarked the code, self
convergence of the method w.r.t. time step is studied in detail for both the planar and
spherical problems. Spatial as well as temporal convergence rates are ’1 as expected from
the difference forms of mass, momentum and energy conservation equations. This shows
that the asymptotic convergence rate of the code is realized properly.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Radiation transport and its interaction with matter via emission, absorption and scattering of radiation have a substantial
effect on both the state and the motion of materials in high temperature hydrodynamic flows occurring in inertial confine-
ment fusion (ICF), strong explosions and astrophysical systems [1]. For many applications the dynamics can be considered
non-relativistic since the flow velocities are much less than the speed of light. In order to describe properly the dynamics of
the radiating flow, it is necessary to solve the full time-dependent radiation transport equation as very short time scales
(tR � l/c or tk � kp/c corresponding to a photon flight time over a characteristic structural length l, or over a photon mean free
path kp) are to be considered [2]. Two methods commonly used are non-equilibrium diffusion theory [3,4] and radiation heat
conduction approximation [1]. The former is valid for optically thick bodies, where the density gradients are small and the
angular distribution of photons is nearly isotropic. The conduction approximation is applicable only for slower hydrody-
namic time scales when matter and radiation are in local thermodynamic equilibrium so that the radiant energy flux is pro-
portional to temperature gradient [1]. Use of Eddington’s factor for closing the first two moment equations is yet another
approach followed in radiation hydrodynamics [5]. Radiative phenomena occur on time scales that differ by many orders
of magnitude from those characterizing hydrodynamic flow. This leads to significant computational challenges in the effi-
cient modeling of radiation hydrodynamics.

In this paper we solve the equations of hydrodynamics and the time dependent radiation transport equation fully implic-
itly. The anisotropy in the angular distribution of photons is treated in a direct way using the discrete ordinates method.
. All rights reserved.
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Finite difference analysis is used for the Lagrangian meshes to obtain the thermodynamic variables. The hydrodynamic evo-
lution of the system is considered in a fully implicit manner by solving a tridiagonal system of equations to obtain the veloc-
ities. The pressures and temperatures are converged iteratively.

Earlier studies on the non-equilibrium radiation diffusion calculations show that the accuracy of the solution increases on
converging the non-linearities within a time step and increasing benefit is obtained as the problem becomes more and more
nonlinear and faster [6,7].

The organization of the paper is as follows: In Section 2 we discuss the finite difference scheme for solving the hydrody-
namic equations followed by the solution procedure of the radiation transport equation and their coupling together to result
in an implicit radiation hydrodynamics code. Section 3 presents the results obtained using this fully implicit one-dimen-
sional radiation hydrodynamics code for the problems of shock propagation in aluminium and the point explosion problem
including radiation hydrodynamics. These benchmark results, thus, prove the validity of the methods. Next, extensive results
of asymptotic convergence studies for both temporal and spatial convergence are presented. Finally the conclusions of this
paper are presented in Section 4.

2. Simulation model

2.1. Implicit finite difference scheme for solving the hydrodynamic equations using a Lagrangian grid

2.1.1. Grid structure
For hydrodynamic calculations, the medium is divided into a number of cells as shown in Fig. 1. The coordinate of the ith

vertex is denoted by ri and the region between the (i � 1) and ith vertices is the ith cell. The density of the ith grid is qi and its
mass is given by
mi ¼ �c � qi � rd
i � rd

i�1

� �
ð1Þ
with ć = 1, p, (4/3) � p and d = 1, 2, 3 for planar, cylindrical and spherical geometries, respectively. Velocity of the ith vertex is
denoted by ui and Pi, Vi, Tion,i, Telec,i,Eion,i and Eelec,i are the total pressure, specific volume, temperature and the specific internal
energy of ions and electrons in the ith mesh, respectively.

2.1.2. Lagrangian step
During a time interval Dt the vertices ri of the cells move as (with an error in position O(Dt)2)
~ri ¼ ri þ uH

i Dt; ð2Þ
uH

i ¼ ð1=2Þðui þ ~uiÞ; ð3Þ
where uH

i is the average of velocity values at the beginning and end of the Lagrangian step, ui and ~ui, respectively.

2.1.3. Discretized form of the hydrodynamic equations
In the Lagrangian formulation of hydrodynamics, the mass of each cell remains constant thereby enforcing mass

conservation.
The Lagrangian differential equation for the conservation of momentum is:
q
d~u
dt
¼ �~rP: ð4Þ
Here, the total pressure is the sum of the electron and ion pressures i.e. P = Pion + Pelec.
In this paper we neglect all terms O(u/c) from the hydrodynamics as well as radiation transport equations. These equa-

tions are valid in the low radiation energy-density regime where radiation momentum deposition to the material is not
important [8] and for radiative flows where the fluid speed u is much smaller than speed of light c [9]. In fact, for the prob-
lems analyzed here, (u/c) is in the range of �0.001 only. Our aim is to investigate the minimal numerical model for radiation
hydrodynamics, where radiation is coupled only to electron energy equation via absorption and emission processes. There-
fore, we do not consider radiation momentum terms arising from radiation transport in material momentum and energy
equations.

Eq. (4) can be discretized, for the velocity ~ui at the end of the time step, in terms of the pressures P1=2
i and P1=2

iþ1 in the ith
and i + 1th meshes after half time step [10]:
Fig. 1. Grid structure.
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~ui ¼ ui �
P1=2

iþ1 � P1=2
i

� �
Dt

qiþ1 riþ1=2 � ri
� �

þ qi ri � ri�1=2
� � : ð5Þ
The velocity in the ith mesh ~ui is determined by the pressure in the ith and i + 1th meshes and hence all the meshes are con-
nected. Mass conservation equation can be used to eliminate the pressures at half time step to obtain an equation relating
the present time step velocities in the adjacent meshes as follows:

The equation describing conservation of mass is
dq
dt
¼ �qð~r �~uÞ; ð6Þ
where q is the mass density of the medium. This equation can be rewritten in terms of pressure using the relation,
dP
dt ¼ dP

dq

� �
S

dq
dt ¼ v2 dq

dt where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

dP
dq

� �
S

r
is the adiabatic sound speed. Therefore, Eq. (6) becomes
dP
dt
¼ �v2q~r �~u: ð7Þ
This can be written for all the one dimensional co-ordinate systems as
dP
dt
¼ �v2q

1
ra

d
dr

rau; ð8Þ
where a = 0, 1, 2 for planar, cylindrical and spherical geometries. This equation can be discretized to obtain the change in
total pressure along a Lagrangian trajectory in terms of the velocity ~ui at the end of the time step [10]:
P1=2
i ¼ Pi þ qi � qiv2

i
1

ra
i�1=2

� ra
i
~ui � ra

i�1
~ui�1

ri � ri�1

� �
Dt
2

ð9Þ
and
P1=2
iþ1 ¼ Piþ1 þ qiþ1 � qiþ1v2

iþ1
1

ra
iþ1=2

�
ra

iþ1
~uiþ1 � ra

i
~ui

riþ1 � ri

� �
Dt
2
: ð10Þ
Here, qi is the quadratic Von Neumann and Richtmyer artificial viscosity in the ith mesh [11]:
qi ¼
�kðqiDxiÞ2

Vi

dVi

dt

	 
2

; ð11Þ
where �k (’3) is a dimensionless constant.
Using Eqs. (9) and (10), P1=2

i and P1=2
iþ1 in Eq. (5) are eliminated to obtain a tridiagonal system of equations for ~ui:
�Ai~uiþ1 þ Bi~ui � Ci~ui�1 ¼ Di; ð12Þ
where
Ai ¼
qiþ1ðv iþ1DtÞ2

2ðqDrÞi
�

ra
iþ1

ra
iþ1=2ðriþ1 � riÞ

; ð14Þ

Bi ¼ 1þ qiþ1ðv iþ1DtÞ2

2ðqDrÞi
� ra

i

ra
iþ1=2ðriþ1 � riÞ

þ qiðv iDtÞ2

2ðqDrÞi
� ra

i

ra
i�1=2ðri � ri�1Þ

; ð15Þ

Ci ¼
qiðv iDtÞ2

2ðqDrÞi
� ra

i�1

ra
i�1=2ðri � ri�1Þ

; ð16Þ

Di ¼ ui �
Dt
ðqDrÞi

½Piþ1 þ qiþ1 � Pi � qi� ð17Þ
with
qDrð Þi ¼ qiþ1 riþ1=2 � ri
� �

þ qi ri � ri�1=2
� �

: ð18Þ
The energy equations, for the ions and electrons, expressed in terms of temperature are
q CVion
@Tion

@t
þ @Eion

@V
@V
@t

� �
¼ � Pion

V
@V
@t
� Pie ð19Þ
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and
q CVelec
@Telec

@t
þ @Eelec

@V
@V
@t

� �
¼ � Pelec

V
@V
@t
þ rRðTelecÞ½ERðr; TelecÞ � BðTelecÞ� þ Pie; ð20Þ
where Eion and Eelec are the specific internal energies and V is specific volume. rR(Telec) is the Rosseland opacity, ER(r,Telec)
is the radiation energy flux and rR(Telec) B(Telec) is radiation emission rate. Pie is the ion–electron energy exchange term
given by
PieðTergs=cm3=lsÞ ¼ 2:704� 10�40nelec nion �
Tion � Telec

T1:5
elec

M�1Z2 � ln K ð21Þ
with ion and electron temperatures expressed in keV. Further, ‘nelec’ and ‘nion’ are the number densities of electrons and ions,
M is the mass number and Z is the charge of the ions. Here the Coulomb logarithm for ion–electron collision is [12]
ln K ¼max 1; 23� ln½ðnelecÞ0:5ZT�1:5
elec �

� �n o
ð22Þ
with Telec expressed in eV.
The discrete form of the energy equations for ions and electrons are
Tn;k
ion;i ¼ Tn�1

ion;i � Pn;k�1
ion;i DVn;k

i þ
Pn;k�1

ie Dt

qn;k�1
i

þ dn;k�1
ion DVn;k

i

 !,
Cn;k�1

Vion;i ð23Þ
and
Tn;k
elec;i ¼ Tn;k�1

elec;i þ
qn;k�1

i Cn;k�1
Velec;i Tn�1

elec;i � Tn;k�1
elec;i

� �
DtDn;k�1

i

þ rn;k�1
Ri

Dn;k�1
i

 !
En;k

i � Bn;k�1
i

� �
�

Pn;k�1
elec þ dn;k�1

elec

� �
qn;k�1

i DVn;k
i

DtDn;k�1
i

þ Pn;k�1
ie =Dn;k�1

i ; ð24Þ
where
Dn;k�1
i ¼

qn;k
i Cn;k�1

Velec;i

Dtn
þ rn;k�1

Ri Cn;k�1
v;Ri ; ð25Þ

dn;k�1
ion ¼ @Eion

@V

	 
n;k�1

i
; ð26Þ

dn;k�1
elec ¼ @Eelec

@V

	 
n;k�1

i

; ð27Þ

Cn;k�1
vRi ¼ 4ac Tn;k�1

elec;i

� �3
ð28Þ
with ‘n’ and ‘k’ denoting the time step and iteration index, respectively. Also, the constants a (= 4r/c), rand c denote the radi-
ation constant, Stefan’s constant and the speed of light, respectively. Stefan–Boltzmann law, BðTelecÞ ¼ acT4

elec , has been used
explicitly in these equations.

2.2. Discrete ordinates method for solving the radiation transport equation

In the Gray approximation, or one group model, the time-dependent radiation transport equation in a stationary medium
is
1
c
@I
@t
þX
!
:~rI þ ðrRðTÞ þ rsÞIð~r;X

!
; tÞ ¼ rRðTÞBðTÞ

4p
þ rs

4p

Z
Ið~r;X0

!
; tÞd X0

!
; ð29Þ
where Ið~r;X
!
; tÞ is the radiation intensity, due to photons moving in the direction X

!
, at space point~r and time t. Here rR(T) is

the one group radiation opacity, which is assumed to be calculated by Rosseland weighing, at electron temperature T (the
subscript of Telec is dropped for convenience). As already mentioned, B(T) is the radiation energy flux emitted by the medium
which is given by the Stefan–Boltzmann law B(T) = acT4. The radiation constant a is ’137 if T is in keV and c in cm/ls. This
formula for the emission rate follows from the local thermodynamic equilibrium (LTE) approximation, which is assumed in
the present model. The scattering cross-section rs, representing Thomson scattering is assumed to be isotropic and indepen-
dent of temperature. In the Lagrangian framework the radiation transport equation for a planar medium is
1
c
q
@

@t
I
q

	 

þ l @I

@x
þ rRðTÞ þ rsð ÞIðx;l; tÞ ¼ rRðTÞBðTÞ

2
þ rs

2

Z 1

�1
Iðx;l0; tÞdl0; ð30Þ
where I(x,l, t) is the radiation intensity along a direction at an angle cos�1(l) to the x-axis. The term q @
@t

I
q

� �
in this equation

arises due to the Lagrange scheme used in solving the hydrodynamic equations.
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Backward difference formula for the time derivative gives
l @In;k

@x
þ rn;k�1

R þ ðcDtÞ�1 þ rs

h i
In;k ¼ rn;k�1

R Bn;k�1

2
þ rs

2

Z 1

�1
In;kðl0Þdl0 þ qn;k�1

qn�1 In�1ðcDtÞ�1
: ð31Þ
Here, ‘n’ and ‘k’ denote the time step and iteration index for temperature, respectively. This iteration arises because the opac-
ity rR(T) and the radiation emission rate rR(T)B(T) are functions of the local temperature T. The converged spatial temper-
ature distribution is assumed to be known for the hydrodynamic cycle for the previous time step. Starting with the
corresponding values of rR(T) and B(T), denoted by rn;0

R and Bn,0, the radiation energy fluxes are obtained from the solution
of the transport equation Eq. (31). The method of solution, well known in neutron transport theory, is briefly discussed be-
low. This is used in the electron energy equation of hydrodynamics (Eq. (24)) to obtain a new temperature distribution and
corresponding values of rn;1

R and Bn,1. The transport equation is again solved using these new estimates and the iterations are
continued until the temperature distribution converges.

Finally the transport equation can be expressed in conservation form in spherical geometry as
l
r2

@

@r
ðr2In;kÞ þ @

@l
ð1� l2ÞIn;k

r

" #
þ rIn;k ¼ Qðr;lÞ ð32Þ
with
r ¼ rn;k�1
R þ ðcDtÞ�1 þ rs; ð33Þ

Qðr;lÞ ¼ rn;k�1
R Bn;k�1

2
þ rs

2

Z 1

�1
In;kðl0Þdl0 þ qn;k�1

qn�1 In�1ðcDtÞ�1
; ð34Þ
where, the second term in Eq. (32) accounts for angular redistribution of photons during free flight. This term arises as a
result of the local coordinate system used to describe the direction of propagation of photons. If this term is omitted, Eq.
(32) reduces to that for planar medium and therefore a common method of solution can be applied.

A slightly more accurate linearization [13] can be introduced in Eqs. (31) and (32) by replacing Bn,k�1 with Bn,k. Then, a
first order Taylor expansion can be used for the approximation Bn,k = Bn,k�1 + (@B/@T)n,k�1(Tn,k � Tn,k�1) from which
(Tn,k � Tn,k�1) can be eliminated using Eq. (24). The convergence of this modified method for treating the non-linearity of
the Planck function may be better compared to the simple iteration method. However, for the problems considered in this
paper we have successfully used the iteration method.

To solve Eq. (32), it is written in the discrete angle variable as [14]
lm

r2

@

@r
r2Im
� �

þ 2
rxm

amþ1=2Imþ1=2 � am�1=2Im�1=2
� �

þ rIm ¼ Qm; ð35Þ
where the indices ‘n’ and ‘k’ on I have been suppressed. Here m refers to a particular value of l in the angular range [�1,1]
which is divided into M directions. The parameter xm is the weight attached to this direction whose value has been fixed
according to the Gauss quadrature and am±1/2 are the angular difference coefficients. Im and Im±1/2 are the intensities at
the centres and the edges of the angular cell, respectively. The angle integrated balance equation for photons is satisfied
if the ‘‘a-coefficients” obey the condition
RM
m¼1½amþ1=2Imþ1=2 � am�1=2Im�1=2� ¼ 0: ð36Þ
As photons traversing along l = ±1 are not redistributed during the flight, the a-coefficients also obey the boundary
conditions
a1=2 ¼ aMþ1=2 ¼ 0: ð37Þ
For a spatially uniform and isotropic angular flux, Eq. (35) yields the recursion relation
amþ1=2 ¼ am�1=2 �xmlm ð38Þ
as the intensity I(r,l) is a constant in this case.
The finite difference version of Eq. (35) in space is derived by integrating over a cell of volume Vi bounded by surfaces

Ai±1/2 where Vi ¼ 4p
R rþ1=2

r�1=2 r2dr ¼ 4p
3 r3

iþ1=2 � r3
i�1=2

� �
and Ai�1=2 ¼ 4pr2

i�1=2. The discrete form of the transport equation in space
and angle is thus obtained as
lm

Vi
½Aiþ1=2Im;iþ1=2 � Ai�1=2Im;i�1=2� þ

2ðAiþ1=2 � Ai�1=2Þ
xmVi

� ½amþ1=2Imþ1=2;i � am�1=2Im�1=2;i� þ rIm;i ¼ Q m;i: ð39Þ
The cell average intensity and source are given by
Im;i ¼
1
Vi

4p
Z riþ1=2

ri�1=2

r2ImðrÞdr ð40Þ
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and
Q m;i ¼
1
Vi

4p
Z riþ1=2

ri�1=2

r2QmðrÞdr; ð41Þ
respectively, where ‘i’ specifies the spatial mesh. As mentioned earlier, planar geometry equations are obtained if the terms
involving am±1/2 are omitted and the replacements Vi = ri+1/2 � ri�1/2 and Ai+1/2 = 1 are made. Thus, both geometries can be
treated on the same lines using this approach. The difference scheme is completed by assuming that the intensity varies
exponentially between the two adjacent faces of a cell both spatially and angularly so that the centered intensity Im,i can
be expressed as [15]:
Im;i ¼ Im;i�1=2 exp �1
2
ðriþ1=2 � ri�1=2Þ

� �
; ð42Þ

Im;i ¼ Im;iþ1=2 exp þ1
2
ðriþ1=2 � ri�1=2Þ

� �
; ð43Þ
where the radii ri+1/2 and ri�1/2 are expressed in particle mean free paths. These relations show that
I2
m;i ¼ Im;i�1=2Im;iþ1=2 ð44Þ
for the spatial direction. Similarly, for the angular direction one gets
I2
m;i ¼ Im�1=2;iImþ1=2;i: ð45Þ
Use of these difference schemes guarantees positivity of all the angular fluxes if Qm,i are positive. The symmetry of the inten-
sity at the centre of the sphere is enforced by the conditions
IMþ1�m;1=2 ¼ Im;1=2; m ¼ 1;2; . . . ;M=2: ð46Þ
Dividing the spatial range into L intervals, for a vacuum boundary at rL+1/2, we have
Im;Lþ1=2 ¼ 0; m ¼ 1;2; . . . ;M=2 ð47Þ
i.e., at the rightmost boundary the intensities are zero for all directions pointing towards the medium. Alternately, boundary
sources, if present, can also be specified.

An iterative method is used to solve the transport equation to treat the scattering term. The radiation densities at the cen-
tre of the meshes are taken from the previous time step, thereby providing the source explicitly. The intensities I1/2,i for all
meshes do not occur in Eq. (39) as a1/2 = 0. Then the intensities I3/2,i are eliminated from this equation using the upwind
scheme I3/2,i = I1,i. Starting from the boundary condition, viz, Eqs. (47), (39) and (44) can be used to determine these two
intensities for all the spatial meshes ‘i’. Thereafter together with Eq. (45), the intensities for all the negative values of lm

can be solved for. At the centre, the reflecting boundary condition given by Eq. (46) provide the starting intensities for
the outward sweeps through all the spatial and angular meshes with positive values of lm.

This completes one space-angle sweep providing new estimates of radiation energy flux (at the mesh centres) given by:
En;k
Ri ¼

X
m

xmIm;i

,X
m

xm; ð48Þ
where the sum extends over all directions M. The mesh-angle sweeps are repeated until the scattering source distribution
converges to a specified accuracy. The rate of radiation energy absorbed by unit mass of the material in the ith mesh is
ei ¼ rn;k�1
Ri En;k

Ri � Bn;k�1
i

h i.
qn;k

i ; ð49Þ
which determines the coupling between radiation transport and hydrodynamics.

2.3. Implicit radiation hydrodynamics solution method

The sample volume is divided into ‘L’ meshes of equal width. The initial position and velocity of all the vertices are defined
according to the problem under consideration. Also the initial pressure, temperature and internal energy of all the meshes
are entered as input.

For any time step, the temperature of the incident radiation is obtained by interpolating the data for the radiation tem-
perature as a function of time (as in the case of shock propagation in aluminium sheet or an ICF pellet implosion in a hohl-
raum). All the thermodynamic parameters for this time step are initialized using their corresponding values in the previous
time step. It is important to note that the velocity ui in Eqs. (3) and (17) and position ri in Eq. (2) are the old variables and
remain constant unless the pressure and temperature iterations for this time step converge.

The temperature iterations begin by solving the radiation transport equation for all the meshes which gives the energy
flowing from radiation to matter.
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The 1D Lagrangian step is a leapfrog scheme where new radial velocities ~ui arise due to acceleration by pressure gradient
evaluated at half time step. This leads to a time implicit algorithm. The first step in the pressure iteration starts by solving the
tridiagonal system of equations for the velocity of all the vertices. The sound speed is obtained from the equation of state
(EOS) of that material. The new velocities and positions of all the vertices are obtained which are used to calculate the
new density and change in volume of all the meshes. The total pressure is obtained by adding the Von Neumann and Richt-
meyer artificial viscosity to the ion and electron pressures and solving the energy equations which takes into account both
the energy flow from radiation and the work done by (or on) the meshes due to expansion (or contraction). The energy equa-
tions for ions and electrons are solved using the corresponding material EOS which provides the pressure and the specific
heat at constant volume of the material (both ions and electrons). The hydrodynamic variables like the position, density,
internal energy and velocity of all the meshes are updated. The convergence criterion for the total pressure is checked
and if the relative error is greater than a fixed error criterion, the iteration for pressure is continued, i.e., the code goes back
to solve the tridiagonal equations to obtain the velocities, positions, energies and so on. When the pressure converges
according to the error criterion, the convergence for the electron temperature is checked in a similar manner. The maximum
value of the error in electron temperature for all the meshes is noted and if this value exceeds the value acceptable by the
error criterion, the temperature iterations are continued, i.e., transport equation, tridiagonal system of equations for velocity,
etc., are solved, until the error criterion is satisfied. Thus the method is fully implicit as the velocities of all the vertices are
obtained by solving a set of simultaneous equations. Also, both the temperature and pressure are converged simultaneously
using the iterative method. Once both the pressure and temperature distributions converge, the position of the shock front is
obtained by noting the pressure change and the new time step is estimated as follows:

The time step Dt is chosen so as to satisfy the Courant condition which demands that it is less than the time for a sound
signal with velocity v to traverse the grid spacing Dx, vDt

Dx < C where the reduction factor C is referred to as the Courant num-
ber. The stability analysis of Von Neumann introduces additional reduction in time step due to the material compressibility
[16].

The order of the Sn approximation may take the values 2, 4, 6 and 8. All the results presented in this paper have been
generated using Sn approximation of order 4.

The above procedure is repeated up to the time we are interested in following the evolution of the system. The solution
method described above is clearly depicted in the flowchart given in Fig. 2. The time step index is denoted by ‘nh’ and ‘dt’ is
the time step taken. The iteration indices for electron temperature and total pressure are expressed as ‘npt’ and ‘npp’, respec-
tively. ‘Error1’ and ‘Error2’ are the fractional errors in pressure and temperature, respectively, whereas ‘eta1’ and ‘eta2’ are
those acceptable by the error criterion.
3. Results

3.1. Investigation of the performance of the scheme using benchmark problems

3.1.1. Shock propagation in aluminium
In the indirect drive inertial confinement fusion, high power laser beams are focused on the inner walls of high Z cavities

or hohlraums, converting the driver energy to X-rays which implode the capsule. If the X-ray from the hohlraum is allowed
to fall on an aluminium foil over a hole in the cavity, the low Z material absorbs the radiation and ablates generating a shock
wave. Using strong shock wave theory, the radiation temperature in the cavity TR can be correlated to the shock velocity us.
The scaling law derived for aluminium is TR ¼ 0:0126u0:63

s , where TR is in units of eV and us is in units of cm/s for a temper-
ature range of 100–250 eV [17].

For the purpose of simulation, an aluminium foil of thickness 0.6 mm and unit cross section is chosen. It is subdivided into
300 meshes each of width 2 � 10�4 cm. An initial guess value of 10�7 ls is used for the time step. The equilibrium density of
Al is 2.71 gm/cc. In the discrete ordinates method four angles are chosen. As the temperature attained for this test problem is
somewhat low, the total energy equation is solved assuming that electrons and ions are at the same temperature (the mate-
rial temperature). The EOS and Rosseland opacity for aluminium are given by
e ¼ PV
c� 1

¼ �TlVm; ð50Þ

jR ¼ l�1T�lR V�mR : ð51Þ
Here V = 1/q is the specific volume and c = 1 + m/(l � 1) is the adiabatic index. These power law functions, of temperature
and density, where � = 12.5 in units of 1014gm cm2�3m s�2 keV�l, l = 5 in units of gmR cm1�mR keV�lR ;l ¼ 1:145; m ¼
0:063;lR ¼ 3:8 and mR = 1.5 are the fitting parameters, are quite accurate in the temperature range of interest [18].

Using the fully implicit radiation hydrodynamics code, a number of simulations are carried out for different values of time
independent incident radiation fluxes or temperatures. Corresponding shock velocities are then determined after the decay
of initial transients. In Fig. 3. we show the comparison between the numerically obtained shock velocities for different radi-
ation temperatures (points) and the scaling law for aluminium (line) mentioned earlier. Good agreement is observed in the
temperature range where the scaling law is valid.



Fig. 2. Flowchart for the implicit 1D Radiation Hydrodynamics. Here, ‘nh’ is the time step index and ‘dt’ is the time step taken. The iteration indices for
electron temperature and total pressure are ‘npt’ and ‘npp’, respectively. ‘Error1’ and ‘Error2’ are the fractional errors in pressure and temperature,
respectively, whereas ‘eta1’ and ‘eta2’ are those acceptable by the error criterion.
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Fig. 4 shows the various thermodynamic variables like velocity, pressure, density and material temperature after 2.5 ns
when the radiation profile shown in Fig. 5 is incident on the outermost mesh. This radiation temperature profile is chosen so
as to achieve nearly isentropic compression of the fuel pellet. The pulse is shaped in such a way that the pressure on the
target surface gradually increases, so that the generated shock rises in strength. From Fig. 4 we observe that the outer meshes
have ablated outwards while a shock wave has propagated inwards. At 2.5 ns, the shock is observed at 0.5 mm showing a
peak in pressure and density. As the outer region has ablated, they move outwards with high velocities. The outermost mesh
has moved to 1.2 mm. The meshes at the shock front move inwards showing negative velocities. Also the temperature profile
shows that the region behind the the shock gets heated to about 160 eV. In Fig. 6 we plot the distance traversed by the shock



Fig. 3. Comparison of simulation data (points) with scaling law (line) relating shock velocity with the radiation temperature for aluminium.

(a) (b)

(d)(c)

Fig. 4. Profiles of the thermodynamic variables: (a) velocity, (b) pressure, (c) density and (d) temperature in the region behind the shock as a function of
position at t = 2.5 ns. The region ahead of the shock is undisturbed and retain initial values of the variables. The incident radiation temperature on the Al foil
is shown in Fig. 5.
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front as a function of time for the above radiation temperature profile. The shock velocity changes from 3.54 to 5.46 cm/ls at
1.5 ns when the incident radiation temperature increases to 200 eV.

All the runs in this study were done on a Pentium (4) computer having 1 GB of RAM operating at 3.4 GHz.
3.1.2. Point explosion problem
3.1.2.1. Sedov’s self similar point explosion problem. The self similar problem of a strong point explosion was formulated and
solved by Sedov [19]. The problem considers a perfect gas with constant specific heats and density q0 in which a large
amount of energy E is liberated at a point instantaneously. The shock wave propagates through the gas starting from the
point where the energy is released. For numerical simulation, the energy E is assumed to be liberated in the first two meshes.
The process is considered at a larger time t when the radius of the shock front R(t)� r0, the radius of the region in which



Fig. 5. Radiation temperature profile in the hohlraum for strong shock propagation in aluminium.

Fig. 6. Distance traversed by the shock front vs. time in Al foil for incident radiation temperature shown in Fig. 5. The two slopes correspond to the two
plateaus in the radiation profile.
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energy is released. It is also assumed that the process is sufficiently early so that the shock wave has not moved too far from
the source. This ascertains that the shock strength is sufficiently large and it is possible to neglect the initial gas pressure P0

or counter pressure in comparison with the pressure behind the shock wave [1].
Under the above assumptions, the gas motion is determined by four independent variables, viz, amount of energy re-

leased E, initial uniform density q0, distance from the centre of the explosion r and time t. The dimensionless quantity
n = r/R serves as the similarity variable. The motion of the wavefront R(t) is governed by the relationship
R ¼ n0
E
q0

	 
1=5

t2=5; ð52Þ
where n0 is an independent variable. The propagation velocity of the shock wave is
D ¼ 2
5

n5=2
0

E
q0

	 
1=2

R�3=2: ð53Þ
The parameters behind the shock front using the limiting formulas for a strong shock wave are
u1 ¼
2

cþ 1
D; ð54Þ

P1 ¼
2

cþ 1
q0D2; ð55Þ

q1 ¼ q0
cþ 1
c� 1

; ð56Þ

T1 ¼
P1

ðc� 1Þq1CV
; ð57Þ
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where CV is the specific heat at constant volume and c = CP/CV is the ratio of specific heats. The distributions of velocity, pres-
sure and density w.r.t. the radius are determined as functions of the dimensionless variable n = r/R. Since the motion is self-
similar, the solution can be expressed in the form
Fig. 7.
for the
u ¼ u1ðtÞ~uðnÞ; P ¼ P1ðtÞePðnÞ; q ¼ q1 ~qðnÞ; ð58Þ
where ~u; eP and ~q are new dimensionless functions. The hydrodynamic equations, which are a system of three PDE’s, are
transformed into a system of three ordinary first-order differential equations for the three unknown functions ~u; eP and ~q
by substituting the expressions given by Eq. (58) into the hydrodynamic equations for the spherically symmetric case
and transforming from r and t to n. The boundary condition satisfied by the solution at the shock front (r = R or n = 1) is
~u ¼ eP ¼ ~q ¼ 1. The dimensionless parameter n0, which depends on the specific heat ratio c is obtained from the condition
of conservation of energy evaluated with the solution obtained.

Also, the distributions of velocity, pressure, density and temperature behind the shock front are generated numerically
using the hydrodynamics code without taking radiation interaction into account. Ideal D-T gas of density q0 = 1 gm/cc
and c = 1.4 is filled inside a sphere of 1 cm radius with the region divided into 100 radial meshes each of width 0.01 cm.
The initial internal energy per unit mass is chosen as 105 Tergs/gm for the first two meshes and zero for all the other meshes.
An initial time step of 10�6 ls is chosen and the thermodynamic variables are obtained after a time 0.2 ls. As in the case of
the problem of shock propagation in aluminium, the total energy equation is solved assuming that electrons and ions are at
the same temperature (the material temperature). In Fig. 7 we compare the distribution of the functions P/P1, u/u1, q/q1 and
T/T1 with respect to r/R obtained exactly by solving the ODEs as explained above (solid lines) with the results generated from
our code (points). Good agreement between the numerical and theoretical results is observed. As is characteristic of a strong
explosion, the gas density decreases extremely rapidly as we move away from the shock front as seen from Fig. 7. In the
vicinity of the front the pressure decreases as we move towards the centre by a factor of 2–3 and then remains constant
whereas the velocity curve rapidly becomes a straight line passing through the origin. The temperatures are very high at
the centre and decreases smoothly at the shock front. As the particles at the centre are heated by a strong shock, they have
very high entropy and hence high temperatures.

3.1.2.2. Point explosion problem with heat conduction. P. Reinicke and J. Meyer-ter-Vehn (RMV) analyzed the problem of point
explosion with nonlinear heat conduction for an ideal gas equation of state and a heat conductivity depending on temper-
ature and density in a power law form [20]. The problem combines the hydrodynamic (Sedov) point explosion with the
spherically expanding nonlinear thermal wave. The RMV problem is a good test to determine the accuracy of coupling
two distinct physics processes: hydrodynamics and radiation diffusion. Later on, Shestakov presented the results of point
explosion with heat conduction using a coupled hydrodynamic diffusion code [21]. In this paper, we generate the results
for the point explosion including radiation interaction using our fully implicit radiation hydrodynamics code. In the heat
conduction approximation, the energy equation is written as
@

@t
ðqEÞ þ ~r � ð~uðqEþ PÞÞ ¼ �~r:H

!
; ð59Þ
where the heat flux H ¼ �v~rT and the conductivity is of the form v ¼ v0qa0 Tb0 where v0, a0 and b0 are constants. The con-
ductivity can be related to Rosseland opacity as follows: H ¼ � c

3rR

~rER in the heat conduction approximation. Now, ER = aT4

and therefore, H ¼ � 4acT3

3rR

~rT, so that v ¼ 4acT3

3rR
. The Rosseland opacity is assumed to vary with density and temperature as

rR = r0qmT�n. Substituting the functional dependencies of conductivity and Rosseland opacity into the equation relating
the two, we obtain a0 = �m and b0 = n + 3. For the problem under consideration, a0 = �2 and b0 = 6.5. So, the Rosseland opac-
Comparison of the scaled variables obtained from the simulation data in the pure hydrodynamic case (points) with the self similar solutions (lines)
point explosion problem. Specific internal energy E = 105 Tergs/gm is deposited in the first two meshes and c = 1.4.
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ity used in our code is rR = r 0q2T�3.5 with r0 ¼ 4ac
3v0

. As in the RMV problem, the initial gas density is assumed to be q = g0rk

with k = �(6b0 � 1)/(2b0 � 2a0 + 1) = �2.111 in this case. The thermodynamic variables are related by the ideal gas equation
of state, P

q ¼ NkT ¼ RT ¼ ðc� 1Þe ¼ CT . If energy is in unit of 1016 ergs, pressure in 1016 ergs/cc, temperature in keV and den-
sity in gm/cc, then we can set C = g0 = v0 = 1.

The normalized density, pressure, velocity and temperature obtained from our radiation hydrodynamic code for c = 5/4 at
4.879 ns for a total energy of 16.9 � 1016 ergs deposited in the first mesh are shown in Fig. 8. The results agree with those
published by RMV and those generated by Shestakov. The kink in q/q1 and a sharp drop in T/T1 at a distance of 0.57 cm are
observed which shows that the heat front lags behind the shock front in this case. The smooth variation of temperature near
the origin shows the effectiveness of radiative energy transfer from regions of high temperature. But for the unperturbed
power law density profile ahead of the shock front, profiles of other variables are somewhat similar to point explosion prob-
lem without heat conduction.

For energy deposition of 235 � 1016 ergs, the heat front is found to move ahead of the shock front at 0.5145 ns in RMV
problem. The perturbations in other variables (pressure and velocity) generated by the advancing heat front are observed
by Shestakov also. However, the results of our radiation hydrodynamic code does not show these features. As shown in
Fig. 9, the heat wave does not move beyond the shock wave and consequently all the variables are unperturbed ahead of
the shock front. The reason behind this difference is the use of heat conduction approximation by RMV and Shestakov.
For the well known Marshak wave propagation problem [22,23], it is found that diffusion approximations lead to a deeper
penetration of radiation into the medium. However, this does not happen when full radiation transport is taken into account.
Further, in the heat conduction approximation, radiation energy density does not evolve independently to reach a distribu-
tion in equilibrium with material temperature. The heat flux H ¼ � 4ac

3r0
q�2T6:5~rT , because of its temperature dependence,

peaks beyond the region where j~rTj begins to decrease. For very high energy deposition, the heat front apparently moves
ahead of the shock front due to pre-heating by radiation conduction. We are attempting a quantitative characterization of
this phenomenon.
3.2. Asymptotic convergence analysis of the code

Asymptotic convergence analysis is performed for conducting verification analysis of the code. The asymptotic conver-
gence rate quantifies the convergence properties of the software implementation (code) of a numerical algorithm for solving
the discretized forms of continuum equations [24].

In the Lagrangian formalism as used in our code though the mesh sizes vary non uniformly with time, the mass of a mesh
remains constant. For any variable ncomputed for a given mesh of mass Dmi and uniform time step Dtl, the fundamental
ansatz of pointwise convergence analysis is that the difference between the exact and the computed solutions can be ex-
panded as a function of the mass and temporal zone sizes:
Fig. 8.
16.9 �
n	 � nl
i ¼ �0 þ AðDmiÞp þ BðDtlÞq þ CðDmiÞrðDtlÞs þ OððDmiÞp; ðDtlÞq; ðDmiÞrðDtlÞsÞ; ð60Þ
where n* is the exact value, nl
i is the value computed on the grid of zone mass Dmi and time step Dtl, �0 is the zeroth order

error, A is the spatial/mass-wise convergence coefficient, p is the mass-wise convergence rate, B is the temporal convergence
coefficient, q is the temporal convergence rate, C is the spatio- temporal convergence coefficient and r + s is the spatio-tem-
poral convergence rate.

Our code verification for both planar and spherical cases consider the global mass-wise and temporal convergence
separately.
Profiles of the scaled thermodynamic variables at t = 4.879 ns for the point explosion problem including radiation interaction for c = 5/4. Total energy
1016 ergs is deposited at t = 0 in the first mesh.



Fig. 9. Profiles of the scaled thermodynamic variables at t = 0.5145 ns for the point explosion problem including radiation interaction for c = 5/4. Total
energy 235 � 1016 ergs is deposited at t = 0 in the first mesh.
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3.2.1. Global mass-wise convergence analysis
We employ the ansatz that the norm of the difference between the exact and computed solutions for the same time step

Dt is
kn	 � nck ¼ AðDmÞp: ð61Þ
Since the exact solution n* is unknown for the radiation hydrodynamics problem, we replace n* by nf where nf is the value
obtained for a very fine mesh (Dmf = Dm/r3 and Dm = qDr). The values nm and ni are also obtained for Dmm = Dm/r and
Dmi = Dm/r2, respectively. Hence the mass-wise convergence rate p is obtained from the following errors:
knf � nck ¼ AðDmÞp; ð62Þ
knf � nmk ¼ AðDm=rÞp; ð63Þ
knf � nik ¼ AðDm=r2Þp: ð64Þ
Applying logarithm to both sides and plotting the logarithm of the norm of the errors as a function of the logarithm of the
mesh width, the slope of the line gives the mass-wise convergence rate p.
logknf � nck ¼ logAþ p logðDmÞ; ð65Þ
logknf � nmk ¼ logAþ p logðDm=rÞ; ð66Þ
logknf � nik ¼ logAþ p logðDm=r2Þ: ð67Þ
For N number of meshes, the L1 norm is defined as
kn2 � n1k1 ¼ DmRN
i¼1jn2 � n1j
and L2 norm as
kn2 � n1k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DmRN

i¼1jn2 � n1j2
q

:

3.2.2. Global temporal convergence analysis
Similar to the mass-wise convergence analysis, the ansatz employed is that the norm of the difference between the exact

and computed solutions for the same mass of the mesh Dm is
kn* � nck = �m + B(Dt)q where �m is the mass-wise error which dominates over the temporal error and hence needs to be

accounted. However, the exact solution n* being unknown, n* is replaced by nf where nf is the value obtained for a very small
time step (Dtf = Dt/s3). The values nm and ni are similarly obtained for Dtm = Dt/sand D ti = Dt/s2, respectively. Replacing n* by
nf, �m on the R.H.S. gets cancelled as all the variables nf, ni, nm, nc, etc., are obtained for the same value of mass of a mesh. Thus
the temporal convergence rate q is obtained from the following equations:
logknf � nck ¼ logBþ q logðDtÞ; ð68Þ
logknf � nmk ¼ logBþ q logðDt=sÞ; ð69Þ
logknf � nik ¼ logBþ q logðDt=s2Þ: ð70Þ
A plot of the logarithm of the L1 and L2 norms of the errors in total internal energy for both spatial/mass-wise and temporal
convergence are shown in Fig. 10 for the problem of shock propagation in aluminium foil. In all the cases the convergence



(a) (b)

(c) (d)

Fig. 10. (a) Spatial convergence rate for the L1 norm. (b) Temporal convergence rate for the L1 norm. (c) Spatial convergence rate for the L2 norm and (d)
temporal convergence rate for the L2 norm obtained for the error in the thermodynamic variable internal energy (E) for the problem of shock propagation in
Al foil.

(a) (b)

Fig. 11. (a) Spatial and (b) Temporal convergence rate for the L1 norm obtained for the error in the thermodynamic variable internal energy (E) for the
problem of point explosion with radiation interaction (total energy 235 � 1016 ergs is deposited).
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rates are ’1 as expected from the discretization of the mass, momentum and energy conservation equations (as explained in
Appendix A). Similar convergence rates (’1) are observed for the other thermodynamic variables like velocity, pressure, den-
sity and temperature. Similarly, for the spherical case of point explosion problem with radiation transport, the spatial and
temporal convergence rates are ’1 for the L1 norm as depicted for the total internal energy in Fig. 11.

4. Conclusions

In this paper we have developed and studied the performance of fully implicit radiation hydrodynamics scheme. The
time-dependent radiation transport equation is solved and energy transfer to the medium is accounted exactly without
invoking approximation methods. To validate the code, the results have been verified using the problem of shock propaga-
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tion in aluminium foil in the planar geometry and the point explosion problem with heat conduction in the spherical geom-
etry. The simulation results show good agreement with the theoretical solutions. For the purpose of verification, asymptotic
convergence analysis is applied to both the problems of shock propagation in aluminium and the point explosion problem
including full radiation transport. The temporal and mass-wise convergence rates are found to be ’1 in agreement with the
fact that the thermodynamic variables velocity, pressure, density, temperature and internal energy have an error O(Dm) for
constant time steps and O(Dt) for a fixed mesh width on discretizing the respective conservation equations.
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Appendix A. Error arising from the discretization of mass, momentum and energy conservation equations

The position of a mesh at time t i.e., ~ri can be written in terms of the position at the previous time ri by Taylor series
expansion as
~ri ¼ ri þ uiDt þ aiðDtÞ2

2
þ OðDtÞ3: ðA:1Þ
In the radiation hydrodynamics code, terms O(Dt)2 has been neglected in writing Eq. (2). So, the error in position is O(Dt)2.
Also, u ¼ dr

dt and hence the error in velocity is O(Dt).
Similarly, in writing Eqs. (9) and (10), i.e. the equation for conservation of mass in discrete form, since the gradient of

velocity is written as a forward difference formula, the error in pressure is O(Dt) for a constant mesh width i.e., the temporal
convergence rate ’1 and O(Dm) for a constant time step, i.e., the spatial/mass-wise convergence rate ’1. From the discrete
form of the energy equations, i.e., Eq. (23), etc., it is observed that the temporal error in internal energy is O(D t) and mass-
wise error is O(Dm).
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